Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 49
1.
Science ; 384(6695): 584-590, 2024 05 03.
Article En | MEDLINE | ID: mdl-38696583

Meningomyelocele is one of the most severe forms of neural tube defects (NTDs) and the most frequent structural birth defect of the central nervous system. We assembled the Spina Bifida Sequencing Consortium to identify causes. Exome and genome sequencing of 715 parent-offspring trios identified six patients with chromosomal 22q11.2 deletions, suggesting a 23-fold increased risk compared with the general population. Furthermore, analysis of a separate 22q11.2 deletion cohort suggested a 12- to 15-fold increased NTD risk of meningomyelocele. The loss of Crkl, one of several neural tube-expressed genes within the minimal deletion interval, was sufficient to replicate NTDs in mice, where both penetrance and expressivity were exacerbated by maternal folate deficiency. Thus, the common 22q11.2 deletion confers substantial meningomyelocele risk, which is partially alleviated by folate supplementation.


Chromosomes, Human, Pair 22 , Meningomyelocele , Meningomyelocele/genetics , Humans , Mice , Animals , Female , Chromosomes, Human, Pair 22/genetics , Folic Acid , Folic Acid Deficiency/complications , Folic Acid Deficiency/genetics , Male , DiGeorge Syndrome/genetics , Exome Sequencing , Chromosome Deletion , Penetrance , Spinal Dysraphism/genetics , Neural Tube Defects/genetics
2.
Nature ; 629(8011): 384-392, 2024 May.
Article En | MEDLINE | ID: mdl-38600385

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Cell Lineage , GABAergic Neurons , Homeodomain Proteins , Mosaicism , Prosencephalon , Transcription Factors , Humans , Prosencephalon/cytology , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Cell Lineage/genetics , Male , Transcription Factors/metabolism , Transcription Factors/genetics , Neurons/cytology , Neurons/metabolism , Female , Hippocampus/cytology , Clone Cells/cytology , Clone Cells/metabolism , Single-Cell Analysis , Parietal Lobe/cytology , Alleles , Neocortex/cytology , Transcriptome
3.
bioRxiv ; 2023 Oct 26.
Article En | MEDLINE | ID: mdl-37961480

Debate remains around anatomic origins of specific brain cell subtypes and lineage relationships within the human forebrain. Thus, direct observation in the mature human brain is critical for a complete understanding of the structural organization and cellular origins. Here, we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific Mosaic Variant Barcode Analysis. From four hemispheres from two different human neurotypical donors, we identified 287 and 780 mosaic variants (MVs), respectively that were used to deconvolve clonal dynamics. Clonal spread and allelic fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted compared with resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome-transcriptome analysis at both a cell-type-specific and single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of MVs across 17 locations within one parietal lobe reveals restrictions of clonal spread in the anterior-posterior axis precedes that of the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus cell-type resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.

4.
Nat Genet ; 55(2): 209-220, 2023 02.
Article En | MEDLINE | ID: mdl-36635388

Malformations of cortical development (MCD) are neurological conditions involving focal disruptions of cortical architecture and cellular organization that arise during embryogenesis, largely from somatic mosaic mutations, and cause intractable epilepsy. Identifying the genetic causes of MCD has been a challenge, as mutations remain at low allelic fractions in brain tissue resected to treat condition-related epilepsy. Here we report a genetic landscape from 283 brain resections, identifying 69 mutated genes through intensive profiling of somatic mutations, combining whole-exome and targeted-amplicon sequencing with functional validation including in utero electroporation of mice and single-nucleus RNA sequencing. Genotype-phenotype correlation analysis elucidated specific MCD gene sets associated with distinct pathophysiological and clinical phenotypes. The unique single-cell level spatiotemporal expression patterns of mutated genes in control and patient brains indicate critical roles in excitatory neurogenic pools during brain development and in promoting neuronal hyperexcitability after birth.


Epilepsy , Malformations of Cortical Development , Humans , Multiomics , Brain/metabolism , Epilepsy/genetics , Mutation , Malformations of Cortical Development/genetics , Malformations of Cortical Development/metabolism
5.
Elife ; 112022 07 05.
Article En | MEDLINE | ID: mdl-35787314

Background: De novo mutations underlie individually rare but collectively common pediatric congenital disorders. Some of these mutations can also be detected in tissues and from cells in a parent, where their abundance and tissue distribution can be measured. We previously reported that a subset of these mutations is detectable in sperm from the father, predicted to impact the health of offspring. Methods: As a cohort study, in three independent couples undergoing in vitro fertilization, we first identified male gonadal mosaicism through deep whole genome sequencing. We then confirmed variants and assessed their transmission to preimplantation blastocysts (32 total) through targeted ultra-deep genotyping. Results: Across 55 gonadal mosaic variants, 15 were transmitted to blastocysts for a total of 19 transmission events. This represented an overall predictable but slight undertransmission based upon the measured mutational abundance in sperm. We replicated this conclusion in an independent, previously published family-based cohort. Conclusions: Unbiased preimplantation genetic testing for gonadal mosaicism may represent a feasible approach to reduce the transmission of potentially harmful de novo mutations. This-in turn-could help to reduce their impact on miscarriages and pediatric disease. Funding: No external funding was received for this work.


Mosaicism , Semen , Child , Cohort Studies , Humans , Male , Software , Spermatozoa
6.
Nature ; 604(7907): 689-696, 2022 04.
Article En | MEDLINE | ID: mdl-35444276

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Clone Cells , Mosaicism , Neocortex , Cell Lineage , Cells, Cultured , Humans , Microglia , Neocortex/cytology , Neocortex/growth & development
8.
Brain ; 145(4): 1551-1563, 2022 05 24.
Article En | MEDLINE | ID: mdl-34694367

The major spliceosome mediates pre-mRNA splicing by recognizing the highly conserved sequences at the 5' and 3' splice sites and the branch point. More than 150 proteins participate in the splicing process and are organized in the spliceosomal A, B, and C complexes. FRA10AC1 is a peripheral protein of the spliceosomal C complex and its ortholog in the green alga facilitates recognition or interaction with splice sites. We identified biallelic pathogenic variants in FRA10AC1 in five individuals from three consanguineous families. The two unrelated Patients 1 and 2 with loss-of-function variants showed developmental delay, intellectual disability, and no speech, while three siblings with the c.494_496delAAG (p.Glu165del) variant had borderline to mild intellectual disability. All patients had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism. FRA10AC1 transcripts and proteins were drastically reduced or absent in fibroblasts of Patients 1 and 2. In a heterologous expression system, the p.Glu165del variant impacts intrinsic stability of FRA10AC1 but does not affect its nuclear localization. By co-immunoprecipitation, we found ectopically expressed HA-FRA10AC1 in complex with endogenous DGCR14, another component of the spliceosomal C complex, while the splice factors CHERP, NKAP, RED, and SF3B2 could not be co-immunoprecipitated. Using an in vitro splicing reporter assay, we did not obtain evidence for FRA10AC1 deficiency to suppress missplicing events caused by mutations in the highly conserved dinucleotides of 5' and 3' splice sites in an in vitro splicing assay in patient-derived fibroblasts. Our data highlight the importance of specific peripheral spliceosomal C complex proteins for neurodevelopment. It remains possible that FRA10AC1 may have other and/or additional cellular functions, such as coupling of transcription and splicing reactions.


Growth Disorders , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Nuclear Proteins , DNA-Binding Proteins/genetics , Growth Disorders/genetics , Humans , Intellectual Disability/genetics , Membrane Proteins/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Nuclear Proteins/genetics , RNA Splice Sites , RNA-Binding Proteins/genetics , Repressor Proteins/genetics
10.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Article En | MEDLINE | ID: mdl-34587386

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Abnormalities, Multiple/genetics , Congenital Abnormalities/genetics , Genetic Pleiotropy , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Wnt Proteins/metabolism , Animals , Disease Models, Animal , Fibroblasts/metabolism , Gene Knock-In Techniques , Genes, Recessive , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Pedigree , Phenotype , Receptors, G-Protein-Coupled/metabolism , Syndrome , Wnt Signaling Pathway
11.
Am J Hum Genet ; 108(10): 2017-2023, 2021 10 07.
Article En | MEDLINE | ID: mdl-34587489

ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.


Cerebral Palsy/pathology , Intellectual Disability/pathology , Leukoencephalopathies/pathology , Monoacylglycerol Lipases/genetics , Mutation , Spastic Paraplegia, Hereditary/pathology , Adolescent , Adult , Cerebral Palsy/etiology , Cerebral Palsy/metabolism , Child , Child, Preschool , Cohort Studies , Female , Humans , Intellectual Disability/etiology , Intellectual Disability/metabolism , Leukoencephalopathies/etiology , Leukoencephalopathies/metabolism , Male , Monoacylglycerol Lipases/deficiency , Pedigree , Phenotype , Spastic Paraplegia, Hereditary/etiology , Spastic Paraplegia, Hereditary/metabolism , Young Adult
12.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Article En | MEDLINE | ID: mdl-34388390

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Growth and Development , Mosaicism , Spermatozoa/metabolism , Adolescent , Aging/blood , Alleles , Clone Cells , Cohort Studies , Humans , Male , Models, Biological , Mutation/genetics , Risk Factors , Time Factors , Young Adult
13.
Genet Med ; 23(10): 1933-1943, 2021 10.
Article En | MEDLINE | ID: mdl-34172899

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Hearing Loss , Lysine-tRNA Ligase/genetics , Neurodevelopmental Disorders , Alleles , Animals , Disease Models, Animal , Hearing Loss/genetics , Humans , Neurodevelopmental Disorders/genetics , Phenotype , Zebrafish/genetics
14.
Eur J Hum Genet ; 29(6): 957-964, 2021 06.
Article En | MEDLINE | ID: mdl-33824466

HEAT repeats are 37-47 amino acid flexible tandem repeat structural motifs occurring in a wide variety of eukaryotic proteins with diverse functions. Due to their ability to undergo elastic conformational changes, they often serve as scaffolds at sites of protein interactions. Here, we describe four affected children from two families presenting with pontocerebellar hypoplasia manifest clinically with neonatal seizures, severe intellectual disability, and motor delay. Whole exome sequencing identified biallelic variants at predicted splice sites in intron 31 of HEATR5B, encoding the HEAT repeat-containing protein 5B segregating in a recessive fashion. Aberrant splicing was found in patient fibroblasts, which correlated with reduced levels of HEATR5B protein. HEATR5B is expressed during brain development in human, and we failed to recover live-born homozygous Heatr5b knockout mice. Taken together, our results implicate loss of HEATR5B in pontocerebellar hypoplasia.


Cerebellar Diseases/genetics , Developmental Disabilities/genetics , Vesicular Transport Proteins/genetics , Animals , Brain/metabolism , Brain/pathology , Cells, Cultured , Cerebellar Diseases/metabolism , Cerebellar Diseases/pathology , Child , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Female , Fibroblasts/metabolism , Homozygote , Humans , Male , Mice , Mice, Inbred C57BL , Mutation , Syndrome
16.
Eur J Hum Genet ; 29(2): 271-279, 2021 02.
Article En | MEDLINE | ID: mdl-32901138

Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A>G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A>G (NM_016146.5:c.454+3A>G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A>G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A>G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A>G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy.


Homozygote , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , RNA Splicing , Vesicular Transport Proteins/genetics , Child , Child, Preschool , Codon, Nonsense , Exome , Exons , Female , Humans , Male , Microcephaly/genetics , Neurodevelopmental Disorders/diagnostic imaging , Pedigree , RNA Splice Sites , Syndrome
17.
J Med Genet ; 58(4): 237-246, 2021 04.
Article En | MEDLINE | ID: mdl-32439809

BACKGROUND: Intellectual disability syndromes (IDSs) with or without developmental delays affect up to 3% of the world population. We sought to clinically and genetically characterise a novel IDS segregating in five unrelated consanguineous families. METHODS: Clinical analyses were performed for eight patients with intellectual disability (ID). Whole-exome sequencing for selected participants followed by Sanger sequencing for all available family members was completed. Identity-by-descent (IBD) mapping was carried out for patients in two Egyptian families harbouring an identical variant. RNA was extracted from blood cells of Turkish participants, followed by cDNA synthesis and real-time PCR for TTC5. RESULTS: Phenotype comparisons of patients revealed shared clinical features of moderate-to-severe ID, corpus callosum agenesis, mild ventriculomegaly, simplified gyral pattern, cerebral atrophy, delayed motor and verbal milestones and hypotonia, presenting with an IDS. Four novel homozygous variants in TTC5: c.629A>G;p.(Tyr210Cys), c.692C>T;p.(Ala231Val), c.787C>T;p.(Arg263Ter) and c.1883C>T;p.(Arg395Ter) were identified in the eight patients from participating families. IBD mapping revealed that c.787C>T;p.(Arg263Ter) is a founder variant in Egypt. Missense variants c.629A>G;p.(Tyr210Cys) and c.692C>T;p.(Ala231Val) disrupt highly conserved residues of TTC5 within the fifth and sixth tetratricopeptide repeat motifs which are required for p300 interaction, while the nonsense variants are predicted to decrease TTC5 expression. Functional analysis of variant c.1883C>T;p.(Arg395Ter) showed reduced TTC5 transcript levels in accordance with nonsense-mediated decay. CONCLUSION: Combining our clinical and molecular data with a recent case report, we identify the core and variable clinical features associated with TTC5 loss-of-function variants and reveal the requirement for TTC5 in human brain development and health.


Developmental Disabilities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/genetics , Transcription Factors/genetics , Alleles , Child , Child, Preschool , Developmental Disabilities/epidemiology , Developmental Disabilities/pathology , Egypt/epidemiology , Exome/genetics , Female , Homozygote , Humans , Intellectual Disability/epidemiology , Intellectual Disability/pathology , Male , Mutation/genetics , Pedigree , Phenotype , Exome Sequencing
18.
Am J Hum Genet ; 108(1): 134-147, 2021 01 07.
Article En | MEDLINE | ID: mdl-33340455

The ubiquitin-proteasome system facilitates the degradation of unstable or damaged proteins. UBR1-7, which are members of hundreds of E3 ubiquitin ligases, recognize and regulate the half-life of specific proteins on the basis of their N-terminal sequences ("N-end rule"). In seven individuals with intellectual disability, epilepsy, ptosis, hypothyroidism, and genital anomalies, we uncovered bi-allelic variants in UBR7. Their phenotype differs significantly from that of Johanson-Blizzard syndrome (JBS), which is caused by bi-allelic variants in UBR1, notably by the presence of epilepsy and the absence of exocrine pancreatic insufficiency and hypoplasia of nasal alae. While the mechanistic etiology of JBS remains uncertain, mutation of both Ubr1 and Ubr2 in the mouse or of the C. elegans UBR5 ortholog results in Notch signaling defects. Consistent with a potential role in Notch signaling, C. elegans ubr-7 expression partially overlaps with that of ubr-5, including in neurons, as well as the distal tip cell that plays a crucial role in signaling to germline stem cells via the Notch signaling pathway. Analysis of ubr-5 and ubr-7 single mutants and double mutants revealed genetic interactions with the Notch receptor gene glp-1 that influenced development and embryo formation. Collectively, our findings further implicate the UBR protein family and the Notch signaling pathway in a neurodevelopmental syndrome with epilepsy, ptosis, and hypothyroidism that differs from JBS. Further studies exploring a potential role in histone regulation are warranted given clinical overlap with KAT6B disorders and the interaction of UBR7 and UBR5 with histones.


Epilepsy/genetics , Hypothyroidism/genetics , Neurodevelopmental Disorders/genetics , Receptors, Notch/genetics , Signal Transduction/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Anus, Imperforate/genetics , Caenorhabditis elegans/genetics , Cell Line , Ectodermal Dysplasia/genetics , Growth Disorders/genetics , HEK293 Cells , Hearing Loss, Sensorineural/genetics , Histones/genetics , Humans , Intellectual Disability/genetics , Mice , Mutation/genetics , Nose/abnormalities , Pancreatic Diseases/genetics , Proteasome Endopeptidase Complex/genetics
19.
Genet Med ; 23(3): 524-533, 2021 03.
Article En | MEDLINE | ID: mdl-33188300

PURPOSE: Dioxygenases are oxidoreductase enzymes with roles in metabolic pathways necessary for aerobic life. 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate dioxygenase (HPD), an iron-dependent dioxygenase involved in tyrosine catabolism. The function and association of HPDL with human diseases remain unknown. METHODS: We applied exome sequencing in a cohort of over 10,000 individuals with neurodevelopmental diseases. Effects of HPDL loss were investigated in vitro and in vivo, and through mass spectrometry analysis. Evolutionary analysis was performed to investigate the potential functional separation of HPDL from HPD. RESULTS: We identified biallelic variants in HPDL in eight families displaying recessive inheritance. Knockout mice closely phenocopied humans and showed evidence of apoptosis in multiple cellular lineages within the cerebral cortex. HPDL is a single-exonic gene that likely arose from a retrotransposition event at the base of the tetrapod lineage, and unlike HPD, HPDL is mitochondria-localized. Metabolic profiling of HPDL mutant cells and mice showed no evidence of altered tyrosine metabolites, but rather notable accumulations in other metabolic pathways. CONCLUSION: The mitochondrial localization, along with its disrupted metabolic profile, suggests HPDL loss in humans links to a unique neurometabolic mitochondrial infantile neurodegenerative condition.


4-Hydroxyphenylpyruvate Dioxygenase , Dioxygenases , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Animals , Exons , Humans , Mice , Mice, Knockout , Phenotype
20.
Neuron ; 109(2): 241-256.e9, 2021 01 20.
Article En | MEDLINE | ID: mdl-33220177

Autosomal-recessive cerebellar hypoplasia and ataxia constitute a group of heterogeneous brain disorders caused by disruption of several fundamental cellular processes. Here, we identified 10 families showing a neurodegenerative condition involving pontocerebellar hypoplasia with microcephaly (PCHM). Patients harbored biallelic mutations in genes encoding the spliceosome components Peptidyl-Prolyl Isomerase Like-1 (PPIL1) or Pre-RNA Processing-17 (PRP17). Mouse knockouts of either gene were lethal in early embryogenesis, whereas PPIL1 patient mutation knockin mice showed neuron-specific apoptosis. Loss of either protein affected splicing integrity, predominantly affecting short and high GC-content introns and genes involved in brain disorders. PPIL1 and PRP17 form an active isomerase-substrate interaction, but we found that isomerase activity is not critical for function. Thus, we establish disrupted splicing integrity and "major spliceosome-opathies" as a new mechanism underlying PCHM and neurodegeneration and uncover a non-enzymatic function of a spliceosomal proline isomerase.


Cell Cycle Proteins/genetics , Cerebellar Diseases/genetics , Microcephaly/genetics , Mutation/genetics , Peptidylprolyl Isomerase/genetics , RNA Splicing Factors/genetics , Spliceosomes/genetics , Amino Acid Sequence , Animals , Cell Cycle Proteins/chemistry , Cerebellar Diseases/complications , Cerebellar Diseases/diagnostic imaging , Cohort Studies , Female , Gene Knockout Techniques/methods , HEK293 Cells , Heredodegenerative Disorders, Nervous System/complications , Heredodegenerative Disorders, Nervous System/diagnostic imaging , Heredodegenerative Disorders, Nervous System/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microcephaly/complications , Microcephaly/diagnostic imaging , Pedigree , Peptidylprolyl Isomerase/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , RNA Splicing Factors/chemistry
...